Python 安装和高斯散点
学习 Python 并实践数据挖掘相关算法。
- Python
- Python 安装国内镜像:https://mirrors.tuna.tsinghua.edu.cn/help/pypi/
- Numpy: Numerical Python
- 安装:https://www.runoob.com/numpy/numpy-install.html
- SciPy: Scientific Python
- 是一个开源的 Python 算法库和数学工具包。
- Matplotlib: 绘图库
- 教程
高斯分布散点图
import matplotlib.pyplot as plt
import numpy as np
points = np.random.normal(loc=[40, 60], scale=15, size=[200, 2])
plt.scatter(points.T[0], points.T[1], marker='o', label="A")
points = np.random.normal(loc=[80, 100], scale=12, size=[100, 2])
plt.scatter(points.T[0], points.T[1], marker='^', label="B")
points = np.random.normal(loc=[20, 110], scale=8, size=[30, 2])
plt.scatter(points.T[0], points.T[1], marker='d', label="C")
plt.show();
3维高斯散点
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
pointsA = np.random.normal(loc=[40, 60, 40], scale=15, size=[200, 3])
ax.scatter(pointsA.T[0], pointsA.T[1], pointsA.T[2], marker='o', label="A")
pointsB = np.random.normal(loc=[80, 100, 80], scale=12, size=[100, 3])
ax.scatter(pointsB.T[0], pointsB.T[1], pointsB.T[2], marker='^', label="B")
pointsC = np.random.normal(loc=[20, 110, 20], scale=8, size=[30, 3])
ax.scatter(pointsC.T[0], pointsC.T[1], pointsC.T[2], marker='d', label="C")
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show();