线性代数-A的LU分解
- 乘法
- 逆
4 7:41
AB 逆矩阵
逆矩阵
\[AA^{-1} = I = A^{-1}A \\ (AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = I\]转置的逆 \((AA^{-1})^T = (A^{-1})^T A^T = I^T = I \\ A^T(A^T)^{-1} = \\ Row1Col1^T = (ARow 1 \cdot BCol1)^T = (BCol1)^T \cdot (ARow1)^T \\ \text 行列式相乘后的转置等于矩阵转置并调换顺序\)
Comments
Leave a comment