汉诺塔是一个典型的递归算法,当初在老师的带领下,顺利地AC了,之后碰到深度优先搜索广度优先搜索时,也用到了递归算法,也蛮好理解的,于是乎,这汉诺塔这道题算是过去了。如今,想起来,这道递归算法理解的还不是很清楚,于是重新仔细看一下。

  • 题目描述
  • 源码 & 解析

题目描述

题目描述来自我的母校(台州学院)的TOJ平台

题目描述如下:

汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒A、B和C,A上面套着n个圆的金片, 最大的一个在底下,其余一个比一个小,依次叠上去, 庙里的众僧不倦地把它们一个个地从A棒搬到C棒上,规定可利用中间的一根B棒作为帮助, 但每次只能搬一个, 而且大的不能放在小的上面。 僧侣们搬得汗流满面,可惜当n很大时这辈子恐怕就很搬了 聪明的你还有计算机帮你完成,你能写一个程序帮助僧侣们完成这辈子的夙愿吗?

输入

输入金片的个数n。这里的n<=10。

输出

输出搬动金片的全过程。格式见样例

样例输入

2

样例输出

Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C

源码 & 解析

#include <stdio.h>

void move(int n, char a, char b, char c) {
  if (n == 1) {
    printf("Move disk %d from %c to %c\n", n, a, c);
  } else {
    move(n - 1, a, c, b);
    printf("Move disk %d from %c to %c\n", n, a, c);
    move(n - 1, b, a, c);
  }
}

main() {
	int t;
	while(scanf("%d", &t) != EOF) move(t, 'A', 'B', 'C');
}

代码执行截屏:

qq 20170725204231

n = 10,在代码中核心的三句话的意思是:

move(n - 1, a, c, b);
// move(9, a, c, b)
// 把第 10 个的上面 9 个,从 A 移到 B,
// 具体怎么操作我不管,反正你完成以上任务就行

printf("Move disk %d from %c to %c\n", n, a, c);
// 嗯,上面这个步骤,已经成功地把上面 9 个圆盘从 A 移到了 B
// 好,我把第 10 个,从 A 移到 C 就行了

move(n - 1, b, a, c);
// move(9, b, a, c)
// 把 B 上的 9 个,从 B 移到 C 就好了
// 我只管发命令,具体怎么执行,我也不管。。。就是这么任性

n = 10,开始代码的意思:

move(10, 'A', 'B', 'C');
// 移动 10 个圆盘,从 A 到 C,以 B 作为辅助

move(n - 1, a, c, b);
// 移动 9 个圆盘,从 A 到 B,以 C 作为辅助

printf("Move disk %d from %c to %c\n", n, a, c);
// 额。。。。

move(n - 1, b, a, c);
// 移动 9 个圆盘,从 B 到 C,以 A 作为辅助

也是怪当年写代码写的不够清楚,在 a, b, c 上纠结了比较久,写成这样会更好一点。

void move(int n, char from, char temp, char to) {
  if (n == 1) {
    printf("Move disk %d from %c to %c\n", n, from, to);
  } else {
    move(n - 1, from, to, temp);
    // 从 from 移到 temp

    printf("Move disk %d from %c to %c\n", n, from, to);

    move(n - 1, temp, from, to);
    // 从 temp 移到 to
  }
}